SHORT PAPER

Electron paramagnetic resonance of gamma irradiation damage centres in acetyl and carbamyl-β-methyl choline chloride

Şemsettin Osmanoğlu^{*} and M. Halim Başkan

*Physics Department, Faculty of Art and Sciences, Dicle University, TR 21280-Diyarbakır, Turkey

The EPR spectra of γ -irradiated powders of acetyl- β -methyl choline chloride (A β MCCI) and carbamyl- β -methyl choline chloride (C β MCCI) indicated the existence of the [Me₃NCMeCH₂OCOMe]CI radical in the former and of the [Me₃NCMeCH₂OCOMH₂]CI radical in the latter.

Keywords: EPR, γ -irradiation, acetyl- β -methyl choline chloride

The radiation sensitivity of biologically important choline derivatives has long been recognised.^{1,2} Selective deuteration of choline chloride has been employed to establish the localisation of the unpaired electron in the radical using EPR techniques.³ Although the spectra were not well resolved they were attributed to the radical CH2CH2OH. The EPR spectra of radiation-damage centres in choline chloride were interpreted⁴ also as being due to a biradical. The EPR spectra of irradiated choline iodide and choline sulfate were examined; it was observed that the radicals formed in all analogues except choline chloride and choline bromide were not hydroxyethyl radicals, but a detailed analysis of their spectra was not attempted.⁵ In addition, the EPR studies of γ -irradiated acetyl choline iodide and bromide,⁶ carbamyl choline chloride⁷ and methoxycarbamylcholine picrate hemihydrate⁸ were investigated. To our knowledge, acetyl- β -methylcholine chloride (1) and carbamyl- β -methylcholine chloride (2) have not been studied so far, and we have now undertaken a study of these compounds.

Fig. 1 The EPR spectrum of γ -irradiated acetyl β -methyl choline chloride powder at room temperature (a), and simulation of the spectrum (b).

A simulation of the spectrum is shown in Fig.1, using the hyperfine coupling constants $a_{CH3} = 23$ G and $a_{CH} = 21$ G, $a_N = 9.6$ G. The measured value of the g factor is $g = 2.0048 \pm 0.0005$.

The EPR spectrum of the γ -irradiated A β MCCl powder at room temperature is shown in Fig.1.The unpaired electron couples with three equivalent methyl protons and one of the methylene protons, which are all magnetically equivalent ,and shows a multiplet, with intensity distribution of 1:4:6:4:1 (five lines), which is further split by coupling to the nitrogen (*I*=1). Therefore, the radical formed by abstraction of a proton from the A β MCCl is given in structure **3**.

In spite of several attempts, a single crystal of C β MCCl was not obtained. The γ -irradiated powder of this compound gives the spectrum shown in Fig.2 at room temperature. The

^{*} To receive any correspondence. E-mail: sems@dicle.edu.tr

[†] This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M).*

Fig. 2 The EPR spectrum of γ -irradiated carbamyl β -methyl choline chloride powder at room temperature (a), and simulation of the spectrum (b).

spectrum can again be interpreted as a 1:1:1 triplet of 1:4:6:4:1 quintets. With the hyperfine constants $a_{CH3} = 23$ G, $a_{CH} = 18$ G, $a_N = 9$ G and the g factor is $g = 2.0048 \pm 0.0005$.

Therefore, the paramagnetic centre can be attributed to the radical (4). The simulation of the powder spectrum, with the values given above, is shown in Fig.2.

In both the radicals 3 and 4, only one of the two methylene protons shows a resolvable coupling. This can be ascribed to the fact that β -coupling is angle-dependent as expressed in Equation (1).

$$a_{\beta} = B_{0} + B_{1} \cos^{2}\theta \tag{1}$$

where B_0 is the spin polarisation contribution ($B_0 = 0.3.5$ G), B_1 is the hyperconjugative contribution (≈ 50 G) and θ is the angle between the π orbital and the C–H bond projections on a plane perpendicular to the C_{α} – C_{β} bond direction.

a plane perpendicular to the C_{α} - C_{β} bond direction. Presumably the "invisible" proton lies close to the model plane of the singley-occupied *p*-orbital, so that $\theta = ca90^{\circ}$, and the major second term in the equation is close to zero.

In conclusion we can state that γ -irradiation produces free radicals in A β MCCl and C β MCCl by loss of the hydrogen atom from the CHMe group.

Experimental

The compounds used in this study were obtained from commercial sources: Aldrich and Sigma catalogues. The samples were irradiated at room temperature with a ⁶⁰Co γ - ray source at 1.5 Mradh⁻¹ for 1h. The EPR spectra were recorded at room temperature with a Varian X-band E-109 C model spectrometer by using 100 kHz modulation. The *g* factors were determined by comparison with a diphenylpicryl-hydrazyl sample of *g* = 2.0036.

Received 16 July 2002; accepted 12 August 2002 Paper 02/1474

References

- 1 B.M. Tolbert, J. Am. Chem. Soc., 1953, 75, 1867
- 2 R.M. Lemmon, M.A. Parsons and D.M. Chin, J. Am. Chem. Soc., 1955, 77, 4139.
- 3 R.O. Lindblom, R.M. Lemmon and M. Calvin, J. Am. Chem. Soc., 1961, 83, 2484.
- 4 Y. Tomkiewiez, R. Agarwal and R.M. Lemmon, J. Am. Chem. Soc., 1973, 95, 3144.
- 5A. Nath, R. Agarwal and R.M. Lemmon, J. Chem. Phys., 1974, 61, 1542.
- 6 F. Köksal and M. Birey, R. Tapramaz and F. Çelik, J. Molec. Struc., 1990, 22, 283.
- 7 F. Köksal and F. Çelik, *J. Chem. Soc., Faraday Trans.*, 1988, **84**, 2305.
- 8 M. Birey, H. Aktaş, A. Alıcılar and M. Guru, *Radiation Effects* and Defects in Solids., 1993, **140**, 365.
- 9 J.R. Morton, Chem. Rev., 1964, 64, 453.